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Abstrad. A neural-network approach is presented for making shon-term predictions on 
time series. The neural network does better at short-term predictions of a chaotic signal 
than does an optimum autoregressive model. Also, the neural network is clearly capable 
of distinguishing between chaos and additive noise. 

1. Introduction 

One of the basic tenets of science is making predictions. If we know previous behaviour, 
how can we predict future behaviour? The approach in many sciences requires two 
steps; construct a model based on theoretical considerations and use measured data 
as initial input. Since, in many cases, the underlying theoretical principles are known, 
modei construction continues to be a primary area of interesting research. 

One class of alternative approaches is to build models directly from the available 
data. For these methods, the data, given as a time series, is usually considered a single 
realization of a continuous random process. This is appropriate when the randomness 
is a result of complex interactions involving many independent and ultimately irreduc- 
ible degrees of freedom. Along these lines, linear models have had some success 
especially in regards to relating cause and effect to physical phenomena; however, 
their predictive power is limited. The limitation is perhaps related to their inability to 
model the evolutionary dynamics of the system [l]. 

In the past few decades advances in the theory of dynamical systems have demon- 
strated the existence of dissipative systems whose trajectories that depict their 
asymptotic final states are not confined on limit cycles (periodic evolutions) or tori 
(quasi-periodic evolutions) but on attractors which are not submanifolds of the total 
available phase space. These attractors are fractal sets and are often called strange 
attractors. The corresponding dynamical systems are called chaotic systems and their 
trajectories never repeat. Thus their evolution is aperiodic but completely deterministic. 
Because the evolution is aperiodic any ‘signal’ measured from a chaotic dynamical 
system ‘looks’ quite irregular and exhibits frequency spectra with energy at all 
wavelengths (broadband spectra) similar to those of random ‘signals’. Another impor- 
tant property of chaotic dynamical systems and their strange attractors is the divergence 
of initially nearby trajectories. Due to the action of the attractor the evolution of the 
system from two (or more) nearby initial conditions will soon become quite different. 
Since the measurement of any initial condition is subjected to some error, such a 
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property imposes limits on long-term prediction. Nevertheless, for a short time nearby 
trajectories may not diverge significantly and thus, even though each individual evol- 
ution might be quite complex, the knowledge of the dynamics and especially of the 
structure of the attractor (dimensions, Lyapunov exponents, etc) may prove beneficial 
to the art of short-term prediction. 

Motivated by the above ideas, very recently a number of techniques for making 
predictions have been developed to exploit the underlying determinism in complex 
systems [2-6!. The p ~ p o s e  of this paper is to show !het nexri! netwnrks BTC capab!e 
of making short-term predictions on time-series data that are better than an optimum 
autoregressive model and to show that such a methodology is capable of distinguishing 
chaos from additive noise. 

2. Exampies 

In this section we present two examples showing the effectiveness of using a neural 
network for making predictions on time-series data. In general, neural networks work 
by iteratively solving for a weight matrix (W) which is used for the inner product that 
takes inputs (X) to outputs. The equation for the weights is given as 

W t '  = W - 7 SE/SW 

where the error (E)  at each iteration n is given by 

E=(X-XWX)* 

and !he sl?m is over a!! inpt .  (companen!s of X). The parameter 7 is the !earning 
rate and is set to a value that ensures convergence. For time-series prediction, the 
inputs are taken to be lagged values of the discrete time sequence. More details 
concerning neural networks are given in Rumelhart et d [ 7 ]  and Owens and Filkin [SI. 

The neural network architecture we employ consists of three layers: one input, one 
hidden and one output layer (figure 1). Learning is achieved using back-propagation 
of the errors resulting from the difference between predicted and actual values during 
training [ 8 ] .  Both time series used in this study consist of 1000 data points. Training 
is performed on the first 500 values with subsequent predictions made on the remaining 
500 values. The number of input nodes is set at eight, the number of hidden nodes is 
set at three and the number of output nodes is set at one. Numerous trial runs indicated 
that the accuracy of prediction was not sensitive to small changes in the number of 
input or hidden nodes. The single output represents some future value of the time 
series we wish to predici. 

The inputs are the components of a reconstructed n-dimensional state space 
consisting of successive time-delayed values of the series. The method is similar to the 
one used by Perrett and van Stekelenborg [9] to predict annual sunspot numbers. For 
example, if we represent the series as x( f j )  where i = 1,2, . . . , L, then with T = 1, and 
using an 8-dimensional phase space beginning with the first value of the time series, 
the first set ef IcpL!ts is {r(!), x(2). . , . , _.\_,, r lR)1 and the ...- niitniit __.r-. w e  nre -.- trvino ..,... to .- ~.__._. nredict 
is x(9). Similarly, the second set of inputs is {x(2), x(3), . . . , ~ ( 9 ) )  and the output we 
are trying to predict is x(l0). Training continues over all training pairs (set of inputs 
and output) for several thousand iterations. 
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Figure 1. Architecture of the three layer neural network used in this study. The number 
of output nodes is set at one corresponding to the fact that we are making predictions one 
step into the future. The number of input nodes is set at eight and the number of hidden 
nodes is set at three. Results from trial runs indicated that adding more input and/or 
hidden nodes did not significantly improve the networks prediction capabilities, rather 
only slowed the convergence. The values at the input nodes are lagged values of the time 
series. 

For the first example, we generate a time series by numerically integrating the 
Lorenz system [ 101 consisting of three ordinary differential equations describing con- 
vection of a fluid, warmed from below in time. The system is given as 

d x / d t =  - a x + a y  

dy/dt  = -xz+  bx-y  

dz/dt  = x y - cz 

where x is proportional to the intensity of convective motion, y is proportional to the 
horizontal temperature variation, z is proportional to the vertical temperature variation, 
and a, b and c are constants. For a choice of constants, corresponding to sufficient 
heating, the convection will exhibit chaos. We use a fourth-order Runge-Kutta integra- 
tion scheme and constants a = 16.0, b = 120.1 and c = 4.0. The time series of convective 
motion (x-component of the system) after all transients (10' iterations) have diminished 
is shown in figure 2 ( a ) .  Positive values indicate upward motion in the fluid. We take 
1000 values from the time series, train the network on the first 500 values and make 
predictions on the last 500 values. Results of the neural network at predicting one step 
into the future (points) compared with the actual values (solid line) are given in figure 
2(b). The normalized root-mean-square error (RMSE) between the actual and predicted 
values is 0.072 where zero implies a perfect forecast. Clearly the network is capable 
of capturing the underlying chaotic dynamics of the system. 

We note here the success of other recent studies concerning accurate predictions 
of chaos using neural networks [ll-141. Our results indicate that accurate short-term 
predictions can he achieved for some chaotic systems with only a relatively small 
number of hidden nodes. We have made no attempt in this study, however, to compare 



846 J B Elmer 

Vertirol motion 
60 , , . ,  I (01 I 

-601 . . , I 

0 1W 200 300 LOO 500 
Time steps 

- 6 0 1 , ,  , , . , , , ,  , , , , , , , , , , I 
2W 220 2LO 260 280 300 

Time steps 

Figure 2. ( a )  Time series of convective motions generated by numerically integrating the 
Lorenz system using a fourth-order Runge-Kutta scheme with time step of 0.03. The time 
axis is in integration steps and the magnitude of convection is on an arbitrary velocity 
scale. The series displays chaotic oscillations. ib)  Comparisons of the actual time series 
(line) with a neural network prediction (points). The actual time series represents a novel 
ponion (second half) o f t h e  convective signal. Predicted values correspond quite well with 
actual values. 

prediction skill with the number of hidden units and only speculate that there may be 
some relationship between the optimum number of hidden nodes and attractor 
dimension or the embedding dimension. 

To assess the predictive ability of the neural network against that of a standard 
statistical model we fit the first half of the time series using an optimum autoregressive 
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process and then compare predictions on the second half of the series from both 
models. For the autoregressive (AR) model the time series is viewed as a single realization 
of a stochastic process which is taken to be stationary and having a Gaussian distribu- 
tion. For model selection we employed the Bayesian Information Criteria [151 and 
determined that the optimum order of the AR model for the convective time series was 
twelve. 

Comparisons between the neural network and AR models are made by quantifying 
how the prediction accuracy (skill) decreases as predictions are made further into the 
future. To do this, we make a prediction one step into the future and then use this 
predicted value as one of the lagged inputs for the next prediction two time steps into 
the future. Similarly, the prediction at this second time step, as well as the previous 
time step, are used as lagged inputs for the next prediction three time steps into the 
future. Doing this successively allows us to compare the correlation coefficient between 
actual and predicted values as a function of prediction time where prediction time is 
given as discrete time steps into the future. The correlation Coefficient between actual 
and predicted values is defined in the standard statistical way and is widely used as 
a measure of predictive skill. This procedure is followed for both the neural network 
model and for the optimum AR model. Results are shown in figure 3. For the first few 
steps into the future predictions from both models are good and the difference between 
the two models in terms of predictive skill is small. In contrast, the neural network 
makes significantly better forecasts than does the AR model as prediction time increases. 
Predictive skill on a non-uniform chaotic attractor will vary in time [16]. However, by 
using the same segment of the attractor to compare the models, as was done, we ensure 
a fair comparison. We note that the AR model is essentially a linear model and therefore 
incapable of capturing the inherent nonlinear nature of such a record. Since the signal 
is, in fact, chaotic we cannot hope to make accurate predictions with any model too 
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Flgure 3. Correlation coefficients computed between actual and predicted values as a 
function of prediction time far the convective motions using a neural network (solid line) 
and using an optimum autoregiessive model (dashed line). Prediction time is given as 
discrete time steps into the future. A correlation coefficient of one corresponds lo perfect 
prediction. The neural network model clearly out-performs the autoregressive model. 
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far into the future and we see the predictive skill of the neural network also drops to 
near zero after a relatively short time. 

Recently it has been suggested that certain nonlinear prediction techniques are 
capable of distinguishing between chaos and noise in time-series records [ 5 ,  171. We 
demonstrate that neural networks share this capability by comparing results of the 
Lorenz system with results from a model trained on a time series generated from 
discrete points on a sine wave, having a unit amplitude, and adding to it at each step 
a uniformiy disiribuied random variabie in the iniervai [-9.5, iXj. Such a time series 
may display character similar to chaotic systems. Fourier analysis will result in spectra 
exhibiting peaks superimposed on a continuous background and dimensional analysis 
may indicate anything from a low-dimensional system (if noise is weak) to a random 
signal (if noise is strong). 

After training the neural network on the first half of the signal composed of a sine 
wave plus noise we make predictions on the second half and, as was done with the 
Lorenz system, we compute the correlation coefficient between actual and predicted 
values as a function of prediction time. The dashed horizontal line in figure 4 is the 
result of this procedure. The independence of predictive skill with prediction length 
is in sharp contrast to the rapid decrease of predictive skill for the chaotic signal from 
the Lorenz system (solid line). From the differences we suggest that predicting time 
series using neural networks is another method for differentiating additive noise from 
deterministic chaos. With a simple AR model, such as persistence, predictive skill on 
a time series containing periodicities and/or noise will show a marked dependency on 
prediction length making it inappropriate for distinguishing chaos. 

Neural network predictions on non-chaotic time series with additive noise will 
appear to have a fixed amount of error, regardless of how far into the future one tries 
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Flgure 4. Correlation coefficients between actual and neuralhetwork predicted values as 
a function of prediction time for the convective motions (solid line) and for a sine wave 
plus noise (dashed line). Prediction time is given as discrete time Steps into the future. In 
many ways a signal composed of a sine wave plus noise is indistinguishable from chaos 
(e.g. Fourier spectrum), however, as is clear from the graphs o f  correlation coefficients, 
such a distinction can be made using a neural network. 
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to predict. On the other hand, prediction accuracy on chaotic time series will degrade 
as one tries to predict too far into the future. It is suggested that it might be possible 
to quantitatively compare the rates of degradation in prediction skill as an indication 
of the amount of chaos in a system. For example, one measure of the rate of degradation 
might simply be how many. prediction steps are necessary before the correlation 
coefficient between actual and predicted values reaches some nearly asymptotic value. 
Lower numbers would correspond to fully developed chaos. Another measure, sug- 
gested recently by Wales [17], is the initial rate in the loss of prediction skill which 
can be related to the largest Lyapunov exponent in the system. We note that preliminary 
model and theoretical results indicate that this measure might be successful at distin- 
guishing chaos from multiplicative noise, although more work in this area is needed. 

-. a ~ ~ ~ i . . ~ ; ~ ~ ~  

In applying chaos theory in the analysis of time-series data one usually begins with 
estimating the dimension of the underlying attractor [18-211 by reconstructing a state 
space from the time series and then applying some variant of the correlation algorithm 
[22] on the set of points. The dimension, which is given by the power-law (scaling) 
behaviour of the correlation integral, gives a measure of the effective number of degrees 
of freedom of the system. Application of the algorithm, however, is subject to many 
problems like proper length of time series, proper time delay, etc. Also, because the 
scaling regions used to estimate the dimension involve only a mal1 number of distances 
between points in the state space much of the information in the time series is lost, 
which for relatively short records can cause serious problems [5]. In addition, such 
methods may not, in certain cases, be able to distinguish self-affine random signals 
from chaos [23]. In contrast, prediction methods like the one discussed here, have the 
advantage that standard statistical procedures (such as correlation coefficients between 
actual and predicted values) can be used to evaluate their performance. Although we 
have studied only the case of additive noise, their performance should provide a more 
stringent test of underlying determinism in complex systems [3,4]. 

Acknowledgments 

I would like to thank J Perrett and J van Stekelenborg ofthe Bartol Research Foundation 
and AOwens at DuPont for introducing me to the back-propagation method for neural 
networks as a model for time-series predictions. Thanks are also extended to A Tsonis 
and the University of Wisconsin-Milwaukee for stimulating discussions during the 
course of this research. Part of the research was supported by NOAAs Global Change 
Program T-POP grant NA16RC-0454-01. 

References 

[ I ]  Farmer J D and Sidorowich J J 1987 Phyr. Rev. Lerr. 59 845 
[Z] Crutchfield J P and McNamara B S 1987 Complex Sysr. I 417 
[3] Farmer 1 D and Sidorowich 1 J 1988 Technical Reporr LA-UR-88.901 Los Alamos National Laboratory 
[4] Casdagli M I989 Physico 35D 335 
[SI Sugihara G and May R M 1990 Nature 344 734 



850 J B Elsner 

[61 Linsay P S 1991 Phys. Lett. 153A 353 
[7] Rumelhart D E, Hinton G E and Williams R J 1986 Norure 323 533 
[81 Owens A J and Filkin D L I989 In:. Con/: on Neural Networks, Washington DC 1381 
[9] Perrett J C and van Stekelenbarg J T P 1990 Bortol Res. Found. New&, DE 
:IO] Lorenr E N 1963 1. Armas. Sei. 20 130 
:I11 Lapedes A and Farber R 1987 Technical Reporr LA-UR-87 Los Alamos National Laboratory 
:12] Stakbro K, Umberger D K and Hertz J A 1990 Complex Syst. 4 603 
:I31 Frison T 1990 1. N e w  Net Comput. 3 31 
1141 Deppisch J, Baur H-U and Geisel T 1991 Phys. Lett 158A 57 
:I51 Katz R W 1982 1. Amos. Sei. 39 1445 
:I61 Nese I M 1989 Physic0 35D 237 
:I71 Wales D I 1991 Nature 350 485 
1181 Nicolis C and Nicolis G 1984 Norure 311 529 
1191 Fraedrich K 1986 1. Amos. Sei. 43 419 
:20] Essex C, Lookman T and Neremberg N A H I987 Nature 326 64 
1211 Tsonis A A and Elsner 1 B 1988 Nnrure 333 545 
:221 Grassberger P and Procaccia I 1983 Phys. Rev. Left M 3446 
1231 Osbome A R a n d  Pravenzale A 1989 Physica 35D 357 


